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P k 1 1  ~~~

The cherma l~ j  ind uc~ r1 ~~~~~~~~ t ~ ~~~ 
I~~ II I ~y s t L ~~ ,u1d i t

i n t e rac t ion  w i t h  the ] r i r~y or I l ~ ~u I~ ~~‘.‘ L ~s . ~h;y~ . inter-
ested meteorolog i sts a t ~e .~ I e~~s i CIfldI.S d i  r € : i  ly  ny c ’ ! . r ~d
with  the development  ot  t h e  w i  id s~’stem . V dj ~io~~ .i ! t .  ic 11 ari d
numerical  s t udi .~s ha ’e Lee~ ~~~~~~~ and have  y i ~ 1.Ied ~~~r tt i~ , t er

esting results. Y~ t rilany pl)en~ nI~~ d in the  L r  al  wind ~~~ r em ha ’.’~:
not really been • xplui ed and exp ’ained satjsfactoril~’ Fru

example , the problem conr ~er t i i ; i g  th e  s~~eed and height of t h e  ma;..i~ •
mum wind or local jet aloo~ th e “alley axis ~~mains unclear .

Whether they result fr.m d11 ect in fluence oL the basic background

flow or just the ~ui’e 1oe.~ I therma l ho i n d a r ”  larger effect or from

interaction of both requires a fur ther understanding of some basic

problems of flow crier and ~l L Oj f l d  t yp ical mountain-valley terrain

and the developmenc of a be tt .~p method to solve the complicated

problem of sophisticated uel p i of boundarj layer dynamics.

In the first part , we (ie”eloped a model to study the flow

over and around more re a li ,,t i : . -
~~~ . I I i r n e f l S i f ld l  mountain-valley

terrain and utilized a r n u 1t i j l ’ .~ ~cdlir1g approach to obtain
truly three-dimensional flow sl lutions for the near region , as well

as for a large distance from the ridges in the lee . ‘flu theoretical

findings from the lee-wave over the lee—slope are in accord with

some observations and other st udies. This investigation is dif-

ferent from many other previous studies in that the flow around

the ridge and along the valley has enabled us to visualize how

interaction between the meso-scile flow and the valley wind system

in the lower layer ta~..es place and to understand better the wind

structure tt der such circumstances. The solution for the wind

component ~~~ a direction parallel to the ridges or in the valley

direction explains some puzzling and interesting valley—wind

phenomena.
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For the second part, studies of boundary layer problems

are presented. The parameterization of the surface layer and

active soil layer with moisture and precipitation contributions
is made for meso-scale dynamics . It can be used for mountain-

valley circulation as long as the slope of the terrain is not

exceedingly large and some other basic conditions are met.

With this parameterization the boundary conditions for the
governing prediction equations of mountain-valley wind problems

in numerical models can be appropriately constructed . Applying

these improved boundary conditions will facilitate the solution

of the numerical model of the boundary layer and over meso- or

large—scale circulation problems and can also produce more real-

istic results.
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ABSTRACT

The meso—scale flow over and around a finite length of mountain ridge

and typical mountain valley terrain is studied . The present study is dif-

ferent from earlier analytical lee wave studies in that the solution is truly

three—dimensional for more realistic topography . A simple model is developed

and is attacked by multiple—scaling approach. The solutions are not only

valid for large distances in the downwind direction, but are also good for the

near regions. The phase lines of the vertical velocity on a horizontal plane

at a given height have shape of hyperbolas and are concave toward downwind

side in accord with observations. The wind component parallel to the mountain

ridge is found to be diffluent on the windward slope side, continuing to be so

after crossing over the ridge in the lowest layer, and to become confluent at

some distance downwind from the ridge . The intensity of the lee wave over a

valley relates to the separation between the two ridges and the stability.

Just above the valley floor, wind parallel to valley axis is in the down valley

direction and thus raises the height of the maximum down—valley wind much higher

than that of maximum ‘slope wind ’ above the valley sides during the night. The

computation also shows the increase of its intensity ar.d height of occurance

with down—valley distance. In the farther downwind direction of the lee, the

maximum confluent flow along the ridge is found at a much lower level and is

stronger. The intensity and the position of the maximum wind parallel to the

valley or the mountain ridges is closely related to the downslope motion of the

lee wave.
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I. INTRODUCTION

Previous theoretical studies of lee waves are numerous . Most attention

has been focussed on two—dimensional lee wave—waves behind an infinitely long

ridge. Earlier works on three—dimensional lee waves are essentially limited

to simple topography .

Scorer and Wilkinson (1956) studied waves in the lee of both isolated

circular and oval—shaped-hills in a two—layer model atmosphere. In each layer,

the “Brunt—V~is~lä frequency over mean wind speed” is assumed constant. They

found that the wave disturbance is essentially confined to a wedge (for example,

with wake angle of 240 in one case) and has the forts of a shipwave. Assuming

an isothermal atmosphere with uniform wind velocity, and ground surface as a

stepped plateau of finite width , Wurtele (1957) was able to show the wave

nodal lines in a horizontal plane are rectangular hyperbolas concave downwind,

in qualitative agreement with clouds observed in the lee of Mt. Fuji and lab-

oratory experiments by Abe (1941). Although he cannot use his one layer model

to show the shipwave type disturbance, Wurtele pointed out , in a later paper

concering cloud photograpnies for the lee of San Nicolas Island (Endinger and

Wurtele, 1972) that when a strong temperature inversion occurs, a classical

shipwave disturbance will develop instead of a cresent—shaped pattern.

Palm (1958) considered the case when the basic wind increases linearly

with height in the troposhere and stays constant in the stratosphere , while the

stabilities are constant in both layers. For a circular hill, Palm obtained a

solution for the vertical velocity and found that the lee waves are also confined

to a wedge in the downwind direction , but only for sections at a relatively large

distance from the hill. In extending his method of study of two—dimensional

lee waves, Ouishi (1960) sought a solution for three—dimensional lee waves due

to a circular hill in the atmosphere with both zero and constant wind shear in

the vertical direction. As done by Scorer and Wilkinson, Wurtele, and Palm,

Onishi also applied the method of stationary phase to obtain the solution. For

the case of constant shear, he managed to increase the wake angle from a small

wedge to a value beyond which no stationary point can be obtained .

1
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In consequence , there 1~ ~~ leo ~~ -~~~ ‘ -~ fo & ~r~ outside this  maxImum wake

angle. As for the case where ~~~~~~~~~~~ is constant wind and strong stability ,

the disturbance is confined t~.. a strip. Crapper investi gated lee wave

problems for a circular mountain first and then a mour .tain with ellipthal

contours (1962). For the latter stud y ,  r , -~r1sta-n t wind s~&e~ r ~~~~~~~~~~~~~ ~~1t ~ 1

both thermal stability conditions constant and an exponentia 1ly ~ec rei~- i r~
with height were considered . Under the constant stabilitj cond~ ’ i n . e

found that the waves are confined to a str ip for  the case ~f no ..-4r ,

whereas the waves are confined to a wedge resembling shi pwaves f C~~~e

with a large constant shear. For the case without wind shear , t h€-~~~~... tude

of the waves in the central plane in the downwind direction of an ei1i~.tical

mountain is greater than that of an infinite ridge. The magnitude or tne

vertical disturbance decays in a form inversely proportional to three halves

(3/2) power of the downwind distance. The results appear to be controversial.

Evaluation of integrals by numerical methods or the use of numerical

models for studies of three—dimensional lee wave problems has increased

recently. A three—dimensional lee wave for an isolated nearly circular hill

was studied with the perturbation method but integrated numerically in both

two— and three—layer models by Sawyer (1962). In his model, the horizontal

wind velocity can change with height in direction , as well as In speed . The

computed vertical velocities due to the lee waves have a series of bow—shaped

patterns concave downwind and which are also confined to a wedge similar to

those obtained by others The maximum magnitude occurs lust off the peak of

the hill and decreases gradually away from the hill. By being aware that the

lee wave disturbance is essentially confined to a wedge and applying a trans-

formation to an oblique co—ordinate system , Pekelis (1966) developed an

algorithm for solving the non—linear three—dimensional lee wave problem. Com-

putations show that the height of an obstacle definitely influences the shape

of the pattern of vertical velocity in the non—linear model. For high steep

mountains where the non—linear process is important , the pattern differs

strikingly from that of relatively low obstacles in that the nodal lines of

the vertical velocity are convex downwind , almost opposite to the shipwave or

bow—shape wave.

7..
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Vergeiner (1975 , 1976) devoi~~.~d a three—diuzen~ional, time dependent ,
linearized numberlcal model. to study Foelin wind and lee wave flow. For the

circular hill case he produced a more or less sImilar kind of vertical velocity

pattern as obtained v others except that some computing noises are involved .

He also applied the model to study the flow over the smoothed topography of

a part of the Tyrol Province of Ausr~-ia and selected soundings yielded

interesting results. Some topographically produced features under the inter-

action between orographically forced and free waves are still recognizable in

the computed wind field . The computed results are generally, also, in agree-

ment with other theoretical and observational evidence.

Considering both cross—wind and vertical shear, Blumen et al.,(l975)
attacked the three—dimensional lee wave behind a nearly circular mountain.

The vertical velocity field is obtained in Fourier integeral and evaluated

numerically. One of the interesting results is that when the constant basis

wind velocity is 23 msec ’, the maximum upward vertical velocity is about

2.5 cm sec 1 at height 2 km and distance 2 km downwind from the center of the

mountain which has a peak height of about 570 m . This vertical velocity is a

much lower value than the one usually obtained by other authors.

Most recently , Cjevik et al (1978) applied a kinematic method developed

by Whitham to investigate the wake angle of shipwave type patterns of the phase

lines of the vertical velocity . The computed wave patterns under various

conditions are qualitatively in agreement with some satellite cloud photographs.

The purpose of the present investigation is to study the three—dimensional

lee wave above the flow over and around a ridge of finite length and above a

typical mountain—valley terrain, and its effects on the mountain—valley wind

system. The problem is studied based on a simple linearized model and is solved

with the multiple scaling approach so that representative solutions can be

obtained for both the near region and the far region of the mountain terrain in

the downwind direction . From the theoretical study , the basic structure of the

velocity field in the lee of the finite rid ge and above a typical valley is

obtained when the thermal boundary layer influence is minimum . Because of our

3 
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interest in effects on valley winds , we direct more attention to 
the near

field than has often been the case in the lee wave studies. 
In Section 2,

a general description is presented. The development of the solutions based

on the multiple—scaling method and the numerical results of the 
solutions

are given in Sections 3 and 4. A brief conclusion and recommendations can

be found in Section 5.

1 ’
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II. THE MODEL

Since our main interest is to explore the consequences of mountain

waves for valley winds, we simplify as cnich as possible the mountain wave

aspect by considering a time—independent Boussinesq, incompressible, stratified

inviscid fluid, and linearize about a basic state with velocity U(Z)>0 in the

x—direction, and thermal stratification T0(Z). Thus, our basic equations for

the perturbation velocity u and temperature e are:
Uu + W1J 1 + 7P — CZg8K = 0 , V •u = 0, and TJ8 + wT’ 0.

— p
0 — — x 0

(a is the thermal expansion coefficient.) Eliminating all the dependent

variables except w arnont these equations one obtains
2 T1~~~ N

2 
2v w  — —  w w 0 (1)xx U xx 1

wt~ere is the horizontal Laplace operator and N2 = ugT0’ is the square of

the Brunt—Väisäl~ frequency.

We take this equation on O<Z<rH with the boundary conditions

w U(o) on Z 0 (2a)

w 0  on Z irH (2b)

The function h in (2a) represents , on the linear theory, the height of the

mountain as a function of the horizontal coordinates. We are going to assume

that the characteristic scale of variation of h, in its dependence on x, is of

the same order as the depth wR of the layer. However, its characteristic scale

of variation in y is taken to be larger by a factor of ~~~~~~~~~ where c is a small

parameter . It is this aspect ratio parameter £ which we shall exploit in

solving the problem; the small parameter Implicitly already used in making the

linearization may be taken to be the ratio h 0/R , where h 0 is , say , the maximum

height of the mountain.

5~~~ 
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We assume h tends to zero (with sulficient rapidity for mathematical needs)

as x or y+±~ . We shall give expl icit calculations for the example:

h = ho exp [- K !x / l i~ - (E~,/ H ) 2 !  (3)

(In place of (2b) one could also consider an unbounded layer, H then being

art appropriate scale height for the velocity and stratification profiles;

if the latter are such as to admit wave propagation at large Z, the condition

w-’o would then be replaced by an outgoing wave condition.)

We introduce dimensionless position coordinates temporarily distinguished

by overbars, by

x x H , y yH , Z = zH

and also set cy = Y. We set

— —  — — 2 - ~-~’ — 2 —h = h0h(x ,Y ) ,  U = U(o)U ( z ) ,  N U = H J(~)

and for the dependent variables take:

u = U(o)h H v = £U(o)h0H 
~~

w = U(o)h0lf
4
~ , O = U(o) 2h 0(ng H2 )~~~o

p = p U(o) h0H p

Then the basic equations become, on dropping the overbars ;

Uu + U’w + 0 (4a)

VV~ + Py O (4b)

11w —O + 0 (4c)
x

0 + UJw = 0  (4d)

U + c
2v + w 0 (4e)

x Y z

~, 5~~
- -

6
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and equation (1) for w ~lots.~ hec-.-n~- --s

I- -
~~2 2 ~~~2 1 2

+ r ~~~~ + ~ 2 L + ~ ~~~~~~~~ — n (5)
2 2 U 2 2 2

L ~lx j ~x J ~y

The dimensionless form of the boundary conditions (2) is

o n z = O  (6a)

w = O  o n z = r  (6b)

We have used 11(o) as the characteristic scale for the velocity profile;

this would of course not be appropriate If U(o) 0; by in such a case

neither would be the linearization . In the calculations using (3), which

in dimensionless form is

h = exp [_K;x~_Y2J (7)

we shall also take U and J to be constants.

In addition to these boundary conditions, we have the conditions of

no ~pstream influence, meaning that w (and the other perturbation quantities

as well) should tend to zero for x~ —~, and downstream boundedness, meaning
that they should bounded for x~ +~‘. We also assume that they tend to zero

as ?-~±~ for any fixed x. Actually , we are considering a family of problems

parameterized by c, and we shall require these conditions expressed in the

above dimensionless form, to hold uniformly in € , as c~o
+. We shall also be

concerned to find a representation of the solutions which is uniformly valid

in as large a domain as possible as € -~o. If the problem is attacked as a

perturbation problem in C in the most straightforward way, one does not , In

fact, get a representation uniformly valid for large x; in order to obtain a

relatively simple and useful description of the flow a somewhat different

approach is needed . We shal1 see that there are, in fact , three different

scales in x, x = 0(1), 0(c
1) ,  and 0(1—2) which are Important in this descrip—

tion; this will be clarified by consideration of the specifir example (7),

to which we now proceed .

7
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III THE SOLUTIONS

We now take 11 and J to be constants, so U 1; we assume J>O (static

stability). Let w~~ (x ,Y) to be the Fourier sine coefficients of w on

O<Z<ir :

sin nz w dz

We shall represent w by its sine series, but since w does not vanish on

Z 0, the terms of this series will only tend to zero like 1/n. Thus the

series will not be directly useful for computation; we shall consider later

how it can be improved . More important is the fact that formal term by term

differentiation of the series does not give, for example, the correct sine

series of a
2

w Thus , the sine series should n~t simply be substituted
- 4

into eq (5) However, the consequences of (5) for the w~~~ are read ily

F obtained by multiplying it by (2/ ir ) sin nz and integrating from 0 to ir. On
2 2

integrating the term involving a w/az twice by parts , using equations (6)

one obtains:

(

~~2 
— 

2 
+ ~ ) 2 (n) 

+ £2 ( 
~~~ 

+ ~~~~~ (8)

Nov take the Fourier transform in Y of this equation, setting (‘i) 
=

~~~~~:~~~~~~~~~
- 

~~~~~~~

this gives:
2 2_ 2 3_

4 a 2 a w~’~ 2 2 ~ —( a )  2n a h (9)
- 

~ + ~ 2 
- £ k 

~ 
+ w - —~~~

ax ax ax

For Ii given by (7), we have

— ~~~~~~~~~~~~ “~sgn(x). (10)

_ _ _ _ _ _ _  
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r

Because of the discontinuity in at x 0 we shall consider separately

the cases of positive and negative x, applying appropriate matching conditions

at the origin. To obtain these conditions, we look also at the other com-

ponents of the flow, representing u, v and p by cosine series of the form

u !~
(o)

+~~ u~~~cos nz~ (u~~ = 

~ 
cos nz dz). and 0 by a sine series

as in the case of w. Taking also the Fourier transform with respect to Y,

equations (4) (for the present example) then give:

+ = 0 (n o) (ila)

— ik~~
’
~ = 0 (n~o) (lib)

— (ii) 
— ~(n)~~~(n) 0 (na-i) (llc)

~(n) + ~;
(nt) 

= 0 (na-i) (lid)

— 1kc~~~~ + nw~~~ = -

~~ 

(nao) (lle)

At x o  we want u, v, w, 0 and p to be continuous. Writing fJ = f(o+)—f(O—)

we thus get:

—(n) = 0 (12a)

0 (12b)
L X

using (llc). Differentiating (llc) and using the other equations shows that

1;n 1 r~
(
~.Ji + n 1~

(
~
)1 —J [;(n)i —n — 

~~~~~ 

T

L X X J (
~ X J  L x J  L i L ~~~~~~ W L X

1 
_ _  

_ _

ii I~~~~~~ 
—_ _ _



I
.

Similarly ~;(n) 1 = {~~
(n) + ~~~~ T = -~~

L xxxj ~. 
XX XX J - 

x

—n 
(n) 

= ~~~~ ~—(n) ~~2 - ~~~~~~~~~~~~~~ 
~~

2n
xx

Since ~ = ‘~f e
_ x l .- k2 /4 , we thus get

= ~~~~~~~~~~~~~ 
(12c)

and = 0 (12d)

Now, using (10) we can write down at once a 
particular solution

(for x + a) of (9):
2nIT

I’2Ke k 4
P = P0e S5TIX = T 2  2 2 ~2 

e sgnx , (13)

(K —n +3) — c k (1+J/K )

P0 being defined thereby . Note that (l2c) can then be written as

(a) 2P
~ 

K~n2+J - c2k2 (J+J/K 2
) ]  

(12c)

P satisfies (9) and tends to zero at ± , but is not continuous at x0.

The solutions of the homogeneous form of (9) are com
binations of exponentials

±Xx 2
e where X is a root of the quadratic

2 2 2 2 2  2
A (A _n +3) - . C k ( X +J) °

2 2
When c is small, one of the roots is near 0 and the other near n — 3 ; since

their product is —e
2
k
2
J, they are always real and of opposite sign.

10
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2 2Let the positive root be called 9. and the negative one —L

2 

~ 
[n
2_j + c k

2
+~~~~

2_J+E2k
2
)
2
~~c

2
k
2
Jj (14a)

L
2 f [fl

2+J_E2k
2
+ /

~fl
2
J+C

2
k
2)2+4C

2
k
2
J~

(Which of these is near 0 and which near n
2
—J depends on the sign of n

2
—J+c

2
k
2
.)

Then the solutions of (9) which tend to zero for x+ — and are boun.ied for

x-’ +~~ are of the form:

— P + Ae9.~C (x1O) (iSa)

— P + Be
9.X + C cosLx + D slnLx (x>o) (15b)

The conditions (12) then give the following equations for A, B, C, and D:

— A + B + C  =-2P
0

—9.A — LB + LD = 0

2 2 2 2 2 2  2 1
. - 9 . A + 9 . B — L C  2P0 —n +J—c k (l+J/K )~-5 J

—L 3A — t 3B — L 3D = 0

I
The solution of these equations is

A — —B P 
2

+C 2k23,K 2 , L 2+9.2

C — 2P0 {_~~+c 2k2J,K2
~ / (L 2+2 2 ) (16)

D — O

i 
/

In principle, this gives the solution to our problem, but because of the

somewhat complicated way that L2 and ~2 depend on k2 it does not seem to 
I 

-~
be possible to invert the Fourier transform in terms of simple formulas.

- jj i. . 14.
& ii

_
~~~~~~

j  l
,. .. _If -5

~~

• 

~~~ ---  
i_ _

~
__

~ ~~~~~~~~~~~~~ .~.L 1~ ~ - 1~ 
-



However, we can now use the small parameter c to obtain more tractable

approximations. We have, first,

11
L
2+ t2 .iI(n2—J+~

2
k

2)2 
+ 4c

2
k
2
3 /2 

= 1n
2—JI +c

2k2 (n2+J)/k2—3I +0(c4),

and so
1 

n
2
—j+In

2
-~ L 

+c
2
k
2 

f(n -J kn
2+J 

+ 0(c
4

) (h a)

L
2 

= ~~ [J_n
2
+tn

2_Jt~ + 
~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

~- + o(~4 ) (17b)

AlSO , 2 - —

= 
2nx

_½
Ke

_k /~ 
1 + e

2
k

2 ~~~~~~ + 0(c
4

) (18)
K -n+J K-n +.J

Let us write n~ for the integral part of ~
½ , supposing (as has already implicitly

been done in writing down (17) that J is not a square integer. Then equations

(17) become

= c
2
k
2J/(J—n

2) + 0(€~) (n~n~ ) (19)

L
2 

— J-.n
2+ c2k2n2/(J—n 2) + 0(c4)

:1 °~ 
~2 — ~

2
—~ + e

2
k
2
n
2/ (n2 3) + 0(c4)

2 2 2 2 4 (n>n*) (20)
L = c k J/(n —J) + 0(c )

I

Using these and (18) in (16) we find, setting

— 2n ½Ke~~~/4 / (K2_n2+J)

2 2  2 2
A — — B — P °e k J  2~~~~2 2  + O ( c ”) -

K (J—n )
-; ‘\ (n

~n~
) (21)

2 2  4 2 2
C ‘~2P°(1+ ~ k 2 1 ~ + 0(c4)

° (3—n ) (K —n

- 

9~t. ~~~~~~~ ~



or
A — B P~ 11+ c k(n -JK -J ) + O(~~)~— = 

O~~ (n
2
—J)

2(K2—n2+J) 1
~ 

(n>n~
) (22)

C = -2P° c2k2J . 
K2 n2+J 

2
K( n —J)

In order to obtain a representation of the solution which is uniformly
valid over as large a ran3e of x as possible one should not, however , simply

— Z j x jexpand the functions e and eosLx in powers of c. It is better to
follow the general idea of multiple scaling, introducing new variables

cx and X = c2x (and possibly X
3 

= c3x etc., though we shall not use these)

so as to obtain a representation of the form w w (x,E ,X,Y,z)+c 2w2 +
in which the second term is in fact of order €2 compared with the first even
when x is as large as €

2
. Thus in using the above approximations in (15)

we write in the “wave case”, n�n~ :

~ (n) 
— p° Il+c2k

2 1+3/K2 —K i xi
o K

2 2 +J 
+ - e S~~flX

2 2 K2—n2+J _ Ik~kI (JI(J_ n
2))½c k J  2 2 2  e sgnx+ ...

K (3-n )

—P°(l+sgnx) ( i+c k 2
2 2  ~

4 jx2
~~

2 +...) ~
2 2

+ 
k n 

2 3/2 (n�n
~

) (23)
2(3—n ) )

and in the “evanescent case ” , n>n~~

+ 
r 

1+c2k2 1+J/1C2 
~~~ 

— K J x~e sgnxo I

K — n +J I 2 2~_n k iX i
~~~~~~ ~1+s 2k2 4 JK2 J2 

+...1e (~~~~~~~~t xI +  
2(fl 2_J) 3/2)

L (n2_J)2(K 2_n2+J)

2 K2—n 2+J cosk~ (J / ( n 2_ J ) ) ½ (n>n ) (24)~~ ( l+sgnx)c 2k 3 2 2 2

13
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t

The other components of the flow , f or n~ 1, can also be obtained by using

equations (11); the results are:

—(n) -~ 1 K2+J p ~~~~~ 9.
2
+3 —9~ xI

u —i--- — o - — Ae
n K 2.

— 
l+sgnx C J~L sinLx ‘ , (25a)

~(n) i~ 
K~ +J p0e

_Kklsgnx - ~~~~~~~~~~ Ae~~
’
~sgnx

— 
l+sgnx 

~ 
J—L 2 

eosLx , (25b)
L

— (a) 
= — 

1
\

K
2

+.J P0e~~~’~t — -
~j~~

— 
1+sgnx c J~L sinLx ,~ , (25c)

= 3~~ 
p e~~

1’
~
_ 
~ e~~~

’
~

— l+sgnx C sinLx ~ . (25d)
2 L (

;(o) ;(o) 
and ~,

O are not determined by w, but are obtained by solving

the n o  cases of (ila , b, e) namely:

+ ~(~) 0 (26a)

o) —ik~~°~ — 0 (26b)

j~(~) —ik€2~~°~ = — _2,r½Ke~~~~~~k~~4sgnx (26c)

-1 These imply

so ~~~~~ 
— k

2
€

2
~~~

°
~ = 2i_½

~
2e~~

N_k
~

14

— 2n~~ 2 2 2 e
_
~
Ct )
~~ ~‘~+ + Ee j

~~
Xj 

. (27)
K — k c

14
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2
(26c) shows that for continuity of ~~

:0) at x o  we have ~o —4ir 1(e~~ ~~

since (27) gives = _41t_½
K3e

t(2 1”4 /(K 2_k 2c 2 ) — 2;fkIE we get

- 
2~~~~e~~~

’4 
~ 

K2 
- 
-2~~~~~kIc -k

2/4E — 

ciki 
— 

K
2
—k

2
6
2 

— 

K
2
—k
2
C
2 e

Thus

( )  
= 

2w
_½
K2 k/4 

(e
_’
~~~

_ !4~.1~ ~~~~~ (28a)

= ~2ir :’~ ‘
~~‘ 

(e

_
_e
~~~~~~~~ sgnx (28b )

o) 
= ;(o) . (28€)

For small s, the factor (K2—k2c2)~~ in (28) may be replaced by IC 2 (1+k2 c2 /K2 ...)

in the same manner as in obtaining (23) and (24). It should perhaps be remarked

that since these expansions in powers of ~
2 
are not uniform in k

2 
— in fact

they should only be used for c2k2/K2 small — we should not, strictly speaking,

use them in evaluating the inverse Fourier transforms. However, because of
—k2/4

the factor e we may cut off the inverse Fourier integral at a finite value

of k, for instance k = Kc ½ 
, thereby incurring only a transcendatally small

error. In the truncated integral, the expansions are legitimate, and the

integrals of its terms can then be replaced by infinite integrals again with

only a transcendantally small error. Thus in fact, one need not worry about

the non—uniformity in of the expansions.

It is now relatively easy to invert the Fourier transforms, using the

following:

2

f f  e
kT_

~~
2 f4 dk = (~a)~~e 

‘a (29a)

15
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e 1
~~~~

2/4
~~

t
~~dk — ~~~ e~~~~~~~Erfc(a-iY) + e +1

~~~Erfc(a+iY)
J

(2 9b)

e
_1
~~

_k2/4
cos(ak

2
+b)dk r

_½
(l+16a2)~~e~~

2
/ +16a

2
)

cos ½ tan 14a - 4aY 
+ b .(29c)

l+16a2 -

and 

e~~~~~~

2
’~cosak dk v ½e

a2
~~

2 
cosh 2aY (29d)

(See, for Instance [Erdelyi et al, Tables of Integral Transforms, McGraw
Hill l954 i ; the integrals are also not d i f f icul t  to evaluate directly.)
(29b) can also be written in real form as

1 ~~ —ikY—k2 /4-a~k f ¼ ~ 2 a2
— e dk = iT e e cos2aY Erfca2 v

Y 2
+ 2v~~ e~ sin2a(Y—~)dn (30)

5)

0

In addition, f or the €2 terms , we need similar integrals with an extra factor
of k2; these can be obtained from the above by differentiating twice with
respect to Y:

A e
_ Y

ic2e~~~
2
~’4dk = (ra 3)~~(2_4Y

2/a)e~~~~ 
(3la)

2 2
i ~2 —ikY_k

2
/4—atkl dk iT~

½ . (4a2+2_4Y2)e~~ ea coa2aY Erf ca
2w J 

e 
-

~Y 2
+ 2v~~ 

- 

e~ sjri2a(Y—~ )d~ — 4air~~

~½ 1 2
+ SaYe le sin2aY Erfca + 2iT e~ cos2a(Y—n)drL1 ~ 0 -

(31b)

16
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1~~~k2e
_ikY_k /4 cos(ak 2+b)dk = ¶ ½(1_16a 2) 5/4 e~~

2
~
1
~ 1~~6a2)

. ~ 2—4Y
2
~~
’6
~
’ cos ½tan ’4a_~~

L5. +b —8a 1i ~ Tsin(½ta~
’4a

1+16a 2 : l+l6a2 ~ l+16a2j

4a 2
— ~~ +b~ 

‘ (3lc)
l+16a2

k
2cosak dk = w ~~~~~~ (2_4Y2_4a2)cosk2aY

+4aY sinh2aY (3ld)

Using these, and setting

Q ~~~/ (K2
—n
2+J) (32a)

2
(so that P — w½Qe

_k /4)

82 = J/ 1 J—n2’I (32b)

v2 4n413—n
2

1
3 (32c)

• = ½tcin
_1
v~X I_ v lX~Y

2/(1~~
2X2) +~~~~~~~~~X (32d)

The inverse transforms of (23) and (24) give:

~~~~~~ 
Ql;

T _K
~
XI sgnx (l+sgnx)(1+v2X2) 

¼e 
I( X )  cos+ (n~n*)

(33a)

~~~~~~~~~~ 
Q1e~ ~ 

Le - 

~ ~~~~~(1+V IXt) ½ sgnx (n>n*) (33b)

17
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— 
~~~~~ (2 4Y2)

_Y KIXI S8Ux_QJ 
Kan

2+J 
2

K - n +J K (J-n )

, (2_4~f
2+4B2~2)e

Y e8
2
Er:c(BI~ i)cos28~ +2w~~ efl

2
sin28I~~l (y_n)d

_4.,(½8j~ I + 88~~~Ye
’
~ e8 ~ Er fc (Bt ~~~)5in2 8RI

+ 2w~~J 
en
2
cos28~(y n)dn — sgnx

—Q(1+sgnx) ~
4—JK

2
—J
2 

2 
( l+v2X2)5/4 e Y / + \ )

~~~
(3—n ) (K -n +3)

r 2 2  2

• 2—4Y
2 ~~~ X cos+—2vIXj 1— sin$ , (n~çn*) (34a)

l+V2X2 - \ 1+V2X2 )

1+J/K (2_4y2)~~
Y K ~Xt sgn x —

K-n +3

—Q n
4—3K

2
-3
2 

2 ( 
2 — 

4,(2 

~i (l+vIXI)
3/2 e~~ 

J I I ( t l )  sgnx

(n —3) (K —n +J) 1+~.’lXl)

—QJ(l+sgnx) !~~
n
~~

J -~ e
_ I
~~B

2
~
2 

(2_4Y2_482~
2)Cosh(2B~~)

K ( n —3 )

+ 48~ sinh(2B~Y) .] (n>n~) (34b)

(33a) exhibits the lee waves seen at large positive x, the function $ of

(32d) giving the phase. If X is large enough that vX’~~1, the lines of constan t

phase are approximatelY the hyperbolas

— 
(J~~2)½ 

t(VX)
2
+l) + ($— ~

) vX = 0

c2v

which have asymptotes of slope

— = ± ~~ 
(J_n 2)¼

18 :
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A picture of some lines of constan t phase computed from (32a) for the

2½  zcase (3—n ) 1€ v = 10 is shown in Figure 1. Of course, if there is more

than one lee wave mode (n*
>l), the asymptotic solution will be a sum of

such terms , and the picture will be more complex.

The inverse transforms for the other components of the flow can be

obtained in the same way from equations (25) and (28). We give only the results

pertinent to u and v up to 0(c).

~ e
’!2 (

1

—KhcI — f~ 
t2e~~Erfc~

• (Ysin2~Y—~cos2~Y) + 2ir~~ e’
~

• L r ~ 2
—4ii~ j e~ Ycos2~ (Y—n)—E sin2~ (Yfl)~ d~ 1~~+0(€ 2) (35a)

u~~~-~~~~~~~
3 ~~~~~t~~+(l+sgnx)~~~

2

2 
(1+~2X

2
)~~

• e
_Y21(1~~

2X2)sin~ — ~~~~~~~~~~ e~~
2

2e8
2
~
2
Erfc(BkI)

2
(Ysin28 I ~ IY— B I cos28~Y)+2 r ½e

’!

Y 2 1
_ 4~~½ 

~ 
e~ LYcos28

~
(Y_ r1)_8

~
8in28

~
(Y_T1)l dii +0(c2)

-J

(o<n

~

q*) (35b)

2- u~~ 
_~~1!~

±L e
_
~
t2_ T

~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

+c(l+sgnx)283 
K
2_
~
2+J 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +O(€ 2)

(n’n*) (35c)
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2 1 2
— 
~K 

e~~ ~ Ye~~ 
X _e

~Erfc I~~I(YcOs2~Y+~sin2EY)

Y 2  -

—21r J eii 
~Ysin2kI (Y— Tl)—IEIcos2~

(Y fl) dii sgnx+0(c2) (36a)

— ~~~~~

2
s~nx ~ ~~K Ix I _ 62 

:

2

~~

2+3 
(e

82~
2
Erfc8I~~I.

• .(Ycos28~Y+B~sin2B~Y)+2~T
½ eii (Ysin28Rt (Y— r

~
)

_ekIcos28~ (Y_n)) dii ,-F (1+sgnx) ~~~~~~ (l+v2X2)5”4

.Ye~~
2 1

~~
2X2

~~cos+_vIXIsin•) +0(E2) , (~~<~~~~*) (36b)

(n) 20)1(2+3 =Y
2_KIxI n

2 
~~~~~~~~~~~~~~ I d

v 

~f l 2  sgnx----y— e

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
K
2
;n
2+J 

•

e
_ 12 82~

2 
(Yc0ah28~Y_ 8~sinh28~Y))~*0(c2) , (n~n*) (36c)

I
I
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We now must see how to improve the convergence of the sine series

for w so that it can be used for computation . Since Q” — for large n

(See (32a), and v’t’ 2/n , we see from (33b) that
(n) 2K —Y2 --K~x I —n~xl

w = — -—e (e —e )sgn x +

+ terms of order n 2 or smaller . (Of course the series E~e
nl
~~sin nz is

ultimately rapidly convergent if x’fo, but the approximation by a moderate

number of terms becomes poor as x-’o.)

h owever , the series with the asymptot ic form as coefficients can be

summed exactly, so by removing this part we are left with a series which

converges rapidly enough to be useful. The power series Z0/n converges

to —log(l—Z) inside the unit c~ircle in the complex Z plane, the logarithm

being defined as 0 at Z=O and with a branch cut extending to the right

from Z—1 . By Abel’s theorem, it also converges to this same sum on the

unit circle too, except at Z—1 . Setting z_e IX~~
15 this give s

—n l xt inz — IxI+izZ e e In —log(l—e )

.. ! e~~t sin nz ,,, Ia —1og(l~e~~~~cosz—ie~~~~sinz)~

— tan
1 e x sinz 

= tan 1 sinz
i_e~~~T~~sz e~~~—cosz

In particular, for x—o , we recover the familiar series

! ~~~~~~ tan~~ ~~~~~ 
tan ’cot z12 = ½ (ir—z )

Thus we have

sin n z ,, e !j~~
_ tan ’ ( lx !e —cosz (37)

21
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Let us set

agnx ~~~~~~ e
_
~~ ~ ;e

_ x
~!~L w~t~ (38)

Then we have

— — e~~
2 Le l

~
4x !

!_z — tan ’ f ~~~~~~~~~~~~~~~~~~~

+ Z w  sin nz
1 0

anu the series in (39) should converge rap idly enough for direct
numerical evaluation .

Investigation of the asymptotic behaviour of the terms in

(34b) shows that they decrease like n 3, so the series may there be used
directly. (35c) shows that for large n

u(~~ a~~~ e
_1
~1X 1~~

2

Thus we set

~ (n) 
— — ~~ ~~~~~~~~~~~~~~ (n~1) (40)

Since in this case we have a cosine series , we use

!e~~~~~~
0
~~~ — Re ~ —log(l~e cosz—ie~~~ sinz)~

— —¼ log(l_2e
_ I

cosz+e 2~~~)

and so
u — — ~ iog (i_2e 

x
Losz+e

_
2 1 X 1 )  e~~ + ~~~~ + i~~~ eosnz (41)

The terms v~~ already decrease like 2
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IV RESULTS AND DISCUSSION

Numerical evaluation of w and v is made for both the single mountain

ridge and the mountain—valley cases , under combination of the following

conditions:

h — 1 K m  U = 1 0 msec~~0

£ — 0.2 K— l . 2 5

3 — 2.0, 7, 13, and 20 if = 3 Km

Based on the formula for a single mountain ridge shown in (3) , the correspond-
ing formula for the mountain—valley terrain case can be written in non—
dimensional form as

h I —K lx— 1 .501 —Klx+1.5OIl ~2

j~ ~~~~~~~ 
+ e

0 1.

in which the valley width or the separation of ridges is three non—dimensional

unit of length, i.e., 9 Km in actual distance. For the single mountain case,

the peak of the ridge is placed at the origin . For the mountain—valley case ,

the valley head is placed at the origin, and peaks of the ridge are at x ± 1  .50 ,

~~o. For the parameters used here , the valley head has the elevation of about
300 a above the horizontal plain . The abscissa x and ordinate y in the

graphs concerning the vertical velocity distributions are dimensionless and

each corresponding unit is equal to 3 Km for x and Kin for z. The velocities

are also non—dimensional. The vertical velocity w o~ unity corresponds to
— 3.33 asec~~ for the value of the parameters used in the present model. For

the figures regarding the distribution of the horizontal velocity component ,

v, the ordinate T Is also dimensionless and Y — 1 corresponds to y = 15 Km.

The velocity v of unity corresponds to 2/3 cnsec4• The horizontal velocity

componen t normal to the mountain ridge is not of much interest here and is

thus not calculated .

-~~ 
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Figures 2 and 3 show the vertical cross—section of the vertical

velocity distribution w(x,z), at Y—0 over a single mountain , corresponding

to J — 2.0, and the horizontal cross—section of w(x ,Y) at z = Km for

3 — 2.0 respectively. Both clearly show that the flow is down slope in the

lee of the ridge. Above the mountain ridge and In the lee phase retardation

takes place with height. There is very little retardation, however, farther

away from the mountain, as shown in Figure 3.

The horizontal distribution of w for the case 3 = 2.0 is shown in

Figure 3. The phase line in the horizontal plane at the z 1.04 Km level

is concave toward the downwind direction. Bow—shaped or crescent shaped

clouds will develop as the manifestation of the vertical motion field where

there is enough moisture. Such clouds were reported by Abe (1941). A crescent—

shaped clear area that developed over an overcast area with low stratus clouds

was recently reported by Edinger and Wurtele (1972). Figure 4 shows the vertical

cross—section of v at Y = 1 (15 1(m) from the valley peak of the ridge.

For Richardson number 3 10, the Brunt—VBis~lä frequency is about 10
2
,

which is the approximate value for the case of the normal atmosphere. Thus a

smaller J means that the atmosphere is less stable. As can be seen from

Figures 5 to 8, the phase retardation is more pronounced in the more stable

case when 3 = 20 (FIgure 8) than in the less stable case (Figure 5). The higher

3 will allow high wave modes to come into play. This is clearly shown in these

graphs. It is of interest to compare Figures 2 and 5 in which the basic con-

ditions are exactly the same, except for the two mountains. The vertical

velocity distributions for the two mountain case is quite different from the

single mountain case. The superposition of the wave solution for each single

mountain at such a valley width used here leads to the damping. However, the

downslope motions still take place in the lee slopes, and the upsiope motion

in the windward slopes of each mountain. The horizontal wave lengths for

Figures 6 and 8 have been shortened somewhat.

I
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Next, let us look at Figures 12 to 14, which depict the vertical
cross—section of the wind component parallel to the valley or the ridges

at Y — 1. These results are reported for the first time. Figures 12 to .l4
show different J’s, varying from 3 = 7 to 20. A considerable increase in

3 will raise the wave mode. The stronger the stability is, the more difficult

it is for the air to move upward. Consequently strong horizontal motion will

go around the mountain. Above the valley, the upvaUey flow (negative v in the

graphs) increases with 3 and the center of maximum v descends to about the 1.5 Km

level at Y 1. The wind component v will change from down—valley into up—valley

at about the 600 a level. In the daytime near valley floors, wind usually blows

toward the up—valley direction. Because the down—valley flow discussed above

due solely to the lee wave effect persists all the time, it will counteract

the thermally induced up—valley winds so that the resultant wind becomes weaker

than the normal case. During the night, the down—valley wind attributed to the

lee wave effect will strengthen the thermally induced down—valley wind. These

results are in very good qualitative agreement with the valley wind observation
made in Vermont valleys which have about the same valley width besides a similar

wind vector at the 1 Km level as used in the example here, by the New York Univ.

Group (Davidson et al., 1958,1963). They have claimed that the case for existence

of nighttime down—valley wind was obvious and immediately convincing while the

case for existence of its daytime up—valley wind was weak.

Farther In the down—valley direction about 10 Km in the lee, strong con-

fluent flow reaches the surface level at Y 1. The component of the velocity

v, in the direction parallel to the valley or ridges in the lee is closely related

to the down—slope lee wave motion. Because the flow in general is down—slope

and the horizontal velocity component, 11, is maximum near the upper portion of

the lee slope, the flow has to force the v component into the down—valley
direction from the valley head. For a valley width that is twice or three times

the size of the present one (18—25 1(m) used for illustrations, the situation may

be just opposite, as can be seen from the distribution of v at a position near x=7.

-

- 

- The maximum up—valley flow is found less than 500 a above the valley floor and

the maximum down—valley wind is found at the 1.7 Km level. Some observations

— 
• reported opposite to that by the NYU Group may have been conducted near valley

center at a site in a wider valley .

_ _ _ _  
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I

Some more interesting results can be found in Figure 15, which shows
the distribution of the wind component in the vertical Y—z plane on the

valley axis (x — 0) for 3 = 20. Note that near the z = 0.10 level (‘ 500 a),

v changes from down—valley flow into up-valley flow. The flow becomes

stronger going away from the valley head at Y = 0, indicating that the down-

ward flow from the valley slope on the upwind direction (ridge at x 1.50)

turns toward the down—valley direction and enhances the thermally induced

drainage wind. This indeed has also offered an explanation as to why the

maximum down—valley winds are usually found near the valley mouth, and the

height of - the maximum down—valley wind in the valley increases as the down—

valley distance increases. It appears that the results obtained here are in

good qualitative agreement with observations and the solutions have depicted

the basic physics behind these puzzling and interesting phenomena reported by

Davidson et al.,(1958, 1963) and studied analytically from another point of

view by Tang (1968). 
-
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V CONCLUSIONS AND RECOMMENDATIONS

Study of the flow over and around ~c truly three—dimensional mountain

ridge of f in i te  length and typical mountain—valley terrains has been a

difficult task owing to the complicated mathematics involved. The present

study has utilized the multiple scaling approach to seek representative

solutions converging uniformly , based on a simple linearized model. The

present model is different from previous studies in that the solutions are

valid for large down—wind distances as well as in the near region. The

linear solutions can be superimposed to obtain solutions for the flow over

typical mountain—valley cases. Three—dimensional solutions have been

obtained which enable us to understand better how the three—dimensional

lee wave affects the valley wind system. The solutions explaIn why a valley

with width of about 10 Km may produce a weak up—valley wind during the day and

strong down—valley flow during the night. -They have also provided an explanation of

the Increasing of the intensity and the height of the maximum down—valley wind

during the night as the down—valley distance increases. The results obtained

here are in agreement with observation available and other findings. The size

of the valley width and the height of the ridges lines are important factors.

In this study we have developed a model based on a relatively simple assump-
tion in which a constant basic wind field is used to avoid complication in

addition to the three—dimensionality in the beginning. It is expected a

multiple—layer analytical model with vertical wind shear and different thermal

stratifications can be constructed and can extend into the higher atmosphere to

include the stratosphere. The thermal boundary layer interaction problem can

be attacked in a more or less similar fashion. With the knowledge of truly

three—dimensional flow over and around mountain—valley terrain and , in addition ,

the further analytical study to be done, we can understand much better the

interaction between the stratified ineso—scale flow forced by the topography

and the thermally induced boundary layer flow. At the same time, an investi-

gation with an improved numerical model based upon the work we have developed

earlier can be revitalized and modified to put it into daily meso—scale

prediction.
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ABSTRACT

£~a~ ed upon the contemporary theoretici].. concept and the
I T  ~uFdti0L of a model recently developed by Kazakov and

La’.ri- ,- - . (1978), a paraineterization of the atmospheric surface

~~i
- .- . -r i Iltu r ~~T ting with  active soil layer is made by taking into

~ c -  u:~t of precipitat ion and soil moisture contributions. A

method for  predict ing surface layer meteorological variables

is developed and can be realized as a subroutine in numerical

predict ion even over non-homogeneous terrain. The development

of the proper heat and moisture f luxes  boundary conditions based

on this study will facilitate the solving of meso—scale and larger

scale circulation problems .
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I .  INTRODUCTION

In order to study meso-scale atmospheric dynamics and

boundary layer problems , the equations governing the atmospheric

surface layer and the remaining part of the atmosphere , and some-

times an equation of the active soil layer, are usually solved

jointly. Previous works that took such an approach are by, for

example , Estoque (1961) and Physick (1976) for meso-scale dynamics ,

and Estoque (1963) and Krishna (1968) for atmospheric boundary

layer studies. Because of the complexity of the problems, it has

been difficult to obtain the optimum realization of the surface

layer model as well as of the main problem , i.e., of the model for

the remaining part of the atmosphere .

Gutman (19514) devoted his work to soil temperature calculation

where a more convenient approach was applied , in which the surface

layer equations are transformed.  The e f f e c t s  of the surface layer

on the soil layer are formulated , although the appearance of the

boundary conditions tend to become more complicated . In the present

paper , the advantages of this approach over others is that the

surface layer model and the main problem for the layer above can

be attacked almost independently. Kazakov and Lazriyev (1978) have

recently taken such an approach to parameterize the surface layer

in its interaction with the active soil layer on the basis of

current theoretical concepts and observational data. In general-

izing this later model we have taken into consideration the soil

moisture and precipitation contributions based upon the development

by Deardorff (1978).
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II. THE CASE WHEN THE SURFACE TEMPERATURE AND MOISTURE ARE KNOWN

It can be proved that the constant flux concept remains valid

for the surface layer over topographically inhomogeneous terrain

under nonstationary conditions as long as the following assumptions

can be met:

1. Characteristic time—scale of the processes are greater

than a few score minutes , and

2. Characteristic horizontal length scales of the processes

are in the order of ten times the thickness of the surface

layer (i.e., ~50O m) or higher. -

• Under such assumptions the following relationships

K -~ -~~ C Vu , K -~~~~ = C Vv (1)u az I) u ~z D

K
0
.
~~ C

H
V(T_T

g
)
~ 

K
0 ~~ 

= C
11 

V(c1—~ g
) (2 )

(CD C
~
2 

~ 
C
H 

= C
~~

C 0)

(all notations are explained at the end of this paper)

can be used as boundary conditions for meso-meteorological and

planetary boundary problems at z h, including the problem of

mountain-valley circulation when the terrain slope is not exceed-

ingly large. It is understood that ~~~ ~g 
and h in this section

are given functions of x , y, and t.

— 

In the paper by Kazakov and Lazriyev (1978) a simple method

to calculate C
D 

and CH as functions of RiB and H,

~h(T -T )
Ri

B = 
g 

~ Ho ~~— ~ 3)

H~k. 
Vh °

2

~~~~ :W~~- - - - - ~— - — ~~~~~~~~~~~~~~~~~~~~~~~~
* ~~~~~~~~~~~~~~~~ 4



was suggested . Although Vh, Th are not known in advance, one can

either determine Vh~ 
CD and CH by iterations by taking Vh ,  CD and

C
~ 

from the previous time steps in the actual computation . If one

wants to obtain the continuous fields of turbulence at z h, one

can use the formulae ,

k \I~~~V h
i h - 

i~~~~ h
>

and ( L i )

____ - 

(K— ) 11 ~h 
d in

- , 3z h 
- 

h 
- 

d
~~h J

(1 u,0)

to determine the coefficients of eddy viscosity and diffusivity

and their derivatives as shown in Eq. (14). Empirical functions

and f 1 are presented in Table 1. The calculation of the distri-

bution of meteorological elements u , v , t and q inside the surface

layer can be obtained from the following equations :

f ~~~~~~~ 
) f (

~~,c )
- U 0 U 0 (5)U - U

h f ( t
~h~~~o

) ~ V V
h

f (c ,~ )
T - Tg (T h - Tg

) 
h’~~o 

‘ 
(6 )

f (c ,c )
q - 

~g ~~h 
- qg

) 
f e (c h~~~~~

)

in which

- z ~~~ h
c r

~~~

h

~~
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— 5. - --- - 

i~ r ~~~~~~~~~~~~~~~~~~



where is a function of both RiB and H, and ~h 
can be calculated

by formulae as indicated in the work by Kazakov and Lazriyev ( 1978) .

The heat and moisture fluxes at level h can then be simply expressed ,

respectively, as

H PcpCflVh (Tg 
- T

h
) (8)

I

and

E PC~ V~~(~~g 
- q~~) (9)
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I I I .  THE FORMULAT iON OF THE EQUATIONS FOR THE CASE WHERE THE
INITiAL. SURFACE TEMPERATURE AND MOISTURE ARE NOT KNOWN

For determining the surface temperature , Tg~ and moisture

the problem has to contain the description of heat and moisture

exchange in the active layer of soil, and the interaction between

the soil and the air. It is essential that these equations are

simple enough for constructing the algorithm which must be conven-

ient  to apply to the complicated problems of atmospheric dynamics.

First let us begin the description of the model with the equation

of heat conduction in the soil.

4 
e v 

~~

-

~~

-

~~~

- (z o) ( 10)

It is well  known that the thermal conductivity of the soil depends

- 
mostly upon the soil moisture , and to a lesser extent on temperature ,

the structure of the soil density . However , the detailed information

concerning the soil moisture changes with depth and also other

aforement ioned propert ies are not available . Thus it would be

appropriate to assume that , for a f i r s t  approximation, the thermal

• d i f fu s iv it y ,  v , depends on moisture only at the ground surface

level so tha t  we can apply  the empirical relationship to calculate

• the soil d i f f u s i v i t y  as shown below :

0.001 + 0 . 0 0 0 1 4  Wg~~
3 

(Cm 2sec~~ ) (11)

which is adopted from Benoit ( 1976)  and Sellers ( 1975) .

In order to solve Equation (10) we regard it as a two point

boundary value problem . By assuming both the absence of the heat

5 flow from the deeper layers of soil below and also a constant soil —

6
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temperature at a g~- - -Jar depth , we may write the lower boundary

condi t ion  as

01 constant ( 12)

for  a giv eli location based on available climatological data . If

we assume tha L the  so-called viscous-sublayer  is absent , it would

be q u it e  n a t u r a l  to acquire con t inu i ty  at the temperature f i e ld

at the soul— air interface , i. e . ,

T ( 13)
z~ o g

it is noteworthy that the inclusion of the viscous sublayer does

not actually complicate matters technically (see Zilitinkevich , 1970).

1-iowc--ver, no report in open l i terature has indicated that the in-

clusion of the sublayer in atmospheric dynamics mode~ has provided

better results.

As for the second boundary condition at z o , we make use of

the heat energy balance equation , as usual at the ground surface ,

C (1 — ~ 
) S + c R — a T — H — LE (at z o)

g g g g ( 14 )

where

C 
~~ 

( 15)

4 R + (1 - 

V 
0 . 6 7  ( 1 . 6 7  x ~~~ ~~~~ 

0 . 0 8  1 T 4 ( 16)

J 

t p

_ _  

7 
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— 
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— -5.

and

-
~ 

0.31 — 0.17 W I~,-J 
(w < ‘W )g k ‘ g k

or ( 17)

(:~g 
0.14 , (W

g ~ 
W k

)

The last two relationshi ps are suggested by Staley and Jurica

(1972) and Idso et al (1975). For the soil moisture equations

we will adapt the force restore method by writing the rate of

change of soil moisture in non—dimensional form as shown in the

fo l lowing :

P — E ( 0 < < 1) (18 )
P d ’ ww 2 max

and
P — E  

_ _ _ _C ——
~~~~~~~~~~~

--- + c g , ( o  < < 1) (19)
1 2 t —

p d ’ w 1
w 1 max

where
w w

w ‘ 4’g w 
g , ( 2 0 )

max max

114 (ip~ ~ 0 .15)  
-

-

C 1 ~~l4 - 2 2 . 5  (~~ - 0.i5),(0.l5< 
~g 

< 0 . 7 5 )

0 . 5 ,  (~~g ~ 0 . 7 5 )  ( 2 1)

C 0 . 9  , -t z 64 00  sec2 1 1

d~ a 10 cm d 50 cm

It is seen from Eq. ( 18) and ( 19) tha t  the ra te  of change of

mois tu re  content  is d i rec t ly  proport ional  to the d i f f e r e n c e

8
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be tween  the  r a t e  ol ;;rccip i tat i o n  and that  of evaporat ion.  The

ineq ua1it~~L:, in the brackets indicate that Equations (18) and (19)

are ~a1~~d or~1y when the values of 
~g 

and ~ are between o and 1.

Beyond t h e s e  l i m it s  the ra te  change of soil moisture  can be nega-

t ive  a f t e r  i-eac.~ir ~ ’ the maximum value of W that  soil moisture
-‘ max

cannot  c o n t i n u o u s l y  increase and the extra mois ture  wi l l  be runoff.

In ord er to eliminate some unknown variables we use the fo l low-

ing relationships , based on (6) arid (7):

T — T ( T  — T ) ~ ( 2 2 )
g h g

- 
~g 

- q
g
) ~ ( 2 3 )

where

f
e a ,~~o~~~~o~~~h ’ ~~~

and (:4)

a
h

From an emp irical relationship suggested by Deardorff (1978)

we present the  s a tu ra t ed  spec i f i c  humid i ty  at ground surface  in

the fol lowing form :

~
g clQg 

+ (1 — ct) ( 2 5 )

Icz ’ (q < Q )

~ 
Q
g 

(26)

I

* 
-



where
/w (~ ,j < ~:k~ g

h ( 2 7 )
1 . (W > W )

p ~~~~~
— k

- ~f-273°
Q (T) .1_ U 7.63 

T-31.1°p I. —

( 2 8 )

Qg 
Q(T

g
)~ ~C~~u mb = const

/

Attention ~hooi-I be 1 aid to the inc-qualities in (26) and (27).

In case 
~g 

j
~ ( 2 ~~) becomes larger than Qg 

we should put 
~g 

equal

to Qg~ 
Thus the possibility of condensation of moisture at ground ~~L~fao

is tar en iritc, ac:o~ r,t . We come now to the inequality in ( 2 7 ),

which  means  th~ t ~f ter the concentration of soil moisture at ground

reasnes ~ cert-ain critic al value W. , less than the W , the f u r thermax
increase of soil mois ture will n~~t change its influence on the air

in the s u r fa c e  layer. The pressure in the formula for saturated

moisture arid humidity in (28) is assumed constant , quite guarantee-

ing the  ~- equired ~ccuracv because this formula is used in this

paper on ly fo r -  one i e ie l , namely , the ground sur face , where rela-

t ive  percentage  crian~~es of the pressure are small.

Next we shall discuss the question of the formulation of the

i n i t i a l  cond i t ions  f o r  ( 1 0) , ( 18)  and ( 1 9) .  In principle it should

be possible to get experimental data about values of soil tempera-

ture and moisture at diff erent d- p ths of the active soil layer for

a certain instant which we ma--j o n-; ide r to be the i n i t i a l  v a l u e .

Liowevet , at the p r ’ -o ’ -iiI ~,ii uh l i L a  i s  pract~ c -i I I~ ur i i v a i i i h l e  f r r -

r o u t i ne  ca lcu lat  ions .  U t l e r e l o r e , we shall assume t h a t  a f t e r  c a l —

cula t ions  have been made f o r -  q u i te  a long in te rva l  of t ime , the

10
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initial conditions becomes less important , because the amount of

moisture in -the soil is changing continuously. The moisture change

will soon beg in to vary quickl:z as time goes on , depending upon the

future development of precipitation and some external factors . At

the same time the in f luence  of the ini t ial  condition of the moisture

gradually fades away . In view of the minor role of the initial

condition , the appropriate initial condition under the circumstances

may simply be assumed as

W = o when t o ( 2 9 )

Considering ( 10) , a parabolic equation , we solve it with the so-

called d i f f e r e n t i a l  equation with no initial condition (See Tikhonov ,

1 9 7 2) .  Following such an approach , we can solve ( 10) , ( 18) and ( 1 9) .

It may be worthwhile to point out again here that unless computations

have been run for a few hours the results for the beg inning time

intervals  have no true physical  meaning and wi l l  not agree with the

observations in the  f i r s t  few hours.

IV . THE DERIVATION OF THE COMPUTATIONAL FORMULAS.

It is important to construct  an algorithm that will be simple

enough for practical application.  Our problem now is to develop

some mathematical expressions similar to (1) and ( 2 ) ,  containing

parameters which are either known or can be computed so that these

expressions can be used as boundary conditions in solving the

governing d i f f e r e n t i a l  equations for the atmospheric dynamics above

the ground . First , we want to ob tain the expression for heat flux I

from the soil , G , with known surface temperature , T
g~ 

The main -
~~~~~~

11 -
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difficulty is that v depends upon soil moisture which changes

with time. However , the indicated difficulty can be overcome

if one can generalize the known expression for the flux

‘t’)3e - 1 1 ~ =o ’ dt 0
z o 

- 
~~~ ~1 dt ’

which corresponds to the exact solution for problem (10) with

boundary conditions ( 12)  and (13) when v is constant. When v

is a given function of time , t , ( 10) may be written in the simpler

expressions below , by absorbing v into E through a simple transfor-

mation.

2 t

= 

~~ 

v (t ) d t )  (31)

The corresponding solution for (31) is -then

-
~ ~~~~~~ 

dO — (y)
- - a° _~~~~~~~. ~-o 

_ _- 

77- 
/ 

~

—

~~~~

— ( 3 2 )

z=-0 
—~~ d~

By changing back ~ into the orig inal notation t , we obtained (33),

which is the generalized equation of (30) for the case v =

+i L0 
=~ _ f

t de~~ 0(t
’) ( f t  v(t)dt)_½dtl (33)

For convenience, we introduce time index , j  , and time step , t~t,

and denote

= j .~~~t 
(34 )

* 
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and

) = (
~ = T, q,  v , e t c .)  ( 3 5 )

Furthermore we introduce -r~ 
~~~~,

T 
j~~1 T — T1 ( 3 6 )

For brevity, we shall drop the time index hereafter if the t ime

step is j + l .  We should always calculate all variables for the

time step j +  1, as the predicted result for the first time step,

in terms of the previous t ime steps. In order to write ( 3 3 )  in

f in i te  di f ference form , let us replace O
~~...0

(t )  and v (t )  by segments

of straight lines as shown schematically in Fig. 1. As a result  of

some elementary t ransformation we have

G = )~g~~~ f z = o  
= M

0
t
g 

+ iS , 
(~

i
g 

= (c s~ s~~ g)

6 = + N 1 T
g
l + N

2 
t g-5 — l 

+ (3 8 )

where

, N2 = M 2 — M 1~

= 

~~~~~~~ ~v
-
~
-- 

(3 9)

:‘ = _ 
-~~~~ -~~~-~~ 

+ 1Tv~~

•’

~~~~~~~~~

2 
- 

~~, 
g. 

-‘
~f T  - 

~~~+ + ~ 
...c/ Y +

j  
The expression for 6, generally speaking , is an infini te series , tbut we truncated the series at the third term for practical purposes.

We have performed many numerical calculations , under the assumption 2
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Figure 1. Schematic Diagram of the Variation of Thermal
Diffusivity of Soil , v , and Surface Temperature ,
0 with time t.
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that v constant , which have shown that the first three terms

can provide the accuracy as required if the time increment is
not more than 25 - 30 minutes .  Thus to use (37), it is necessary
to have information of temperature at ground surface for the time

steps j  - 1 and j  in order to calculate the value at time step
j + 1.

As to the computation of humidity or moisture at ground surface
for the time step j + 1, it can be obtained by solving (18) and
( 19) by forward time difference method in terms of values at time
step j .  Having G ,  one can begin to transform the energy balance
equation ( 14) at ground surface.  Prior to the transformation, we
want f i rs t  to linearize the terms contain Tg

4 and Ta
4 and Qg~ by

making use of small time step,  ~t , in the usual fashion , i . e . ,

Tg
4 (T g~ + T

g
)
4 

= (T g~ ) 4 
+ 14(T

g
] ) 3T g 

(4 0 )

(T~~~) 4 
+ ‘4(T~~~)

3
T (41)

and
j Q Q~~~~+ r 3 Tg g g g

( — dQ (T)) (4 2 )rg
_
dT

Note that because of the linearity of relationships (22) and
(36), the following relationship takes place.

-& 15



T
a 

(1 ~~ Tg 
+ 81

h (~ 3)

Furthermore, if one solves the system of equations (23) and (25)

for unknown variables Qg and we have then

~ ~~~-
‘
+ c~(i — 

~ ) Qg (4 4 )

~ 
+ a -

and
+ (1 — a )  ~~~q = 11 (4 5 )g

Substituting all necessary parameters H, E, G, T
g
4
~ Ta

14
~ 

and R

from (8), (9), (37), (40), (41) and (16), respectively, in addition

to the estimated downward short wave radiative flux near the surface ,

S, into the energy balance equation (14), and solving for the tempera-

ture increment r g~ we have finally,  after rearrangement,

T
g 

= 
~ 

(A
T 

T~ + A
q q 

+ AT ) (4 6)

where

A
~~ 

PC PCH
V
h 

+ 14 (T g
] ) 3 £ gRC; R

Lp C Vha
A = _ _ _ _

q

Am (1 — a ) S + c ~y (T ) 4 
+ 6 — cy (T ~ )

4 
+ (4 7 )g g R  a g g

+ Pc pCfi Vh (Th
J - Tg

J ) - A
q 

Qq
J )

and

A = + cc~ Cfl V 1) + Aq t 
g
1 + ‘~ (T g

) ) 3 c i Cg~
(t~8)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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With ( 1 4 6 ) , H , at level A on the top of the surface layer at time -

step + 1, can be obtained from ( 8 )  as

H = H
1~ 

T
h
+ H

q ~
1
h 

+ 
‘ 

49)

where 
-

H = pc C V A / A
T p H h T

Hq = P C p CH V hAq /A ( 5 0)

HT = (~ e~~C~ V AT/A)  + H~ J
A similar expression can be obtained for E through a somewhat lengthy

manipulat ion , which is shown in the appendix , to yield

E = E
T 

T
h 
+ Eq c~~ + ET (5 1)

where

E = f~~~A / A
I T -

E = f ( b A  /A — 1)

-; E
T 

= (fE A
T
/A) + 

‘ ( 5 2 )

f = PC~~V~ 
~ct+B—ct B~

- 3.80 io 7 .63 . 4.29 x ~~~ 1 .- 

P l.86x10 3/ T j
L 10 g

Except for the coefficients , variables in Equations (49) and (51) are

-; for the time step J+- i at level h and are to be determined . These

two equations will serve as boundary conditions for the prognostic

equations of diffusion for temperature and moisture in the atmos-.

-
~ -

- pheric layer above . This set of equations can be solved iteratively

-4-:
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in addition to the momentum equations and their associated

boundary conditions , until the solutions converge to a desired

accuracy . When and T
h 

are determined , the values of q and T

at the surface and the intermediate levels in the surface layer

can also be easily determined . The proposed more explicit step
by step prredure will definitely facilitate the numerical pre-
diction of meteorological variables in meso-meteorology.

I
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V. DISCUSSION

The horizontal wind components , potential temperature, and

specific humidity in the surface layer can be simply written in

terms of a set of appropriate functions and corresponding specified

boundary values , when the time and length scales in consideration

are not very small. Their fluxes at the upper boundary can also be

expressed in terms of the appropriate boundary values and transfer

coefficients which depend upon the Richardson number and the depth

of the surface layer. Thus this formulation and parameterization

is convenient for studying meso-scale boundary layer problems where

the surface layer effect is important. The model can be used to

determine the surface temperature and specific humidity at the sur-

face by including the precipitation and soil moisture when the values

at the top of the surface layer can be obtained by solving the

governing equations in the layer above. Prediction formulae for

heat f lux are also developed by using f ini te  time difference formula-

tion.

This model and parameterization can be applicable to planetary

boundary problems as well as to meso—meteorological problems over

mountain terrain (Tang and Peng , 1977). Since mountain-valley

circulation results from the interaction between the air in the

atmospheric surface layer over the sloping mountain-valley surface

and that of higher layers and the ambient atmosphere , the determin-

ation of the meteorological variables in the surface layer is

essential. The formulation and parameterization developed here will

facilitate the numerical experiments of three-dimensional , non-

stationary , meso-scale mountain-valley circulation and interaction

with the layer scale flow . -

19
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Note that the earth ’ s surface , in particular mountain or

valley surfaces , is usually covered by forest and vegetation.

Based on Deardorff ( 1978) we made estimations which indicate that

the vegetation layer greatly influences the meteorological processes

in the boundary layer. Therefore it is our intention to consider

the above concept and take this more sophisticated approach to

improve the present model of three—dimensional flow over mountain-

valley terrain step by step in the near future.
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I,

NOTA~tONS

Arabic

a anenon~ter level over the earth surface

c specific heat of soil

c~ specific heat of air at constant pressure

CD drag coefficient

heat and noisture transfer coefficient

d~ soil depth influenced by the diurnal soil rxoisture cycle

d’ soil depth influenced by seasonal noisture variations
2

E evaporation rate

( )~ the subscript g refers to the variable in question at ground surface

G soil heat flux

h surface layer height above the ground surface

H sensible heat flux from the ground (positive when it is upward)

j tii~e step index

thermal eddy diffusivity

K
9 

ntuentum eddy diffusivity

L latent heat of vaporization - -

p n~ an value of pressure at the ground

P precipi tation rate/n Ess per unit tii~~ and area/specific humidity

~~ 
specific humidity at an~ raneter level

q(T) saturation specific humidity at temperature T

RI
B 

bulk Richardson number

R I~MrsJard longwave radiative flux

S influx of sbortwave radiation near ground

t tinE
i~1 -

~~~

At tine step interval

T tdçeL~atme 
I

u
~ 

friction velocity 
I

4 
u,v velocity o~~~onents in x- and y- axes direction, respectively

21
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I

Arabic

V total wind speed

w volumetric concentration of soil noisture

w2 
vertically averaged value of volumetric noisture concentration in
the majority part of d~ below which the noisture flux is negligible

x,y horizontal coordinates

z vertical coordinate/positive upward

z0 roughness length

W
~ 

critical or saturated value of w

W~~~ maxim um value of w

Greek

a degree of soil surface water saturation

a ’ fraction

ground surface albedo

v thernal diffusivity of soil

ground surface emissivity

8 soil temperature

g temperature at z o

p air density

soil density

water density

a Stefan—Bo1t~znan constant

a cloud fraction
c

X buoyancy parameter

H
F.

22
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Appendix

Derivation of the working formula for moisture at the top of

the surface layer , E.

From (8), (25), and ( 2 8 ) ,  E may be written as

a -
E PCH

V
h ct+6—a~ 

~~ — A .1

Because of the non-linear expression of Qg ifl Tg~ linearization was

made from ( 2 8 ) , i.e.

3.80 7.63 
Tg - 273° 

-

Q 10g p Tg — 31.1

I 
~~~~

° ~~
7.:3 ~l 

A .2
- 

~~~~ lO l .86 xlO a)

where b 3 . 8 0  107.63 . Let

1 , x~~~ T 
A .3

101.86x10 
g

1

Expanding c~ into Taylor ’s series at ,~ x0 
yields

1 1 J l \  1
2

• o 6 1 6 2
~ 

+ ~~~ (x-xo ) + 2 ~ x:x (x-xo ) +

2. Sx - o
A .~

For T~ 300°K and time interval of 20-30 minutes, (x—x ) will be

about 5°C. in extreme cases. The higher order terms are much smaller

than the first order term and can be neglected . Then

1 i

c
x 

— C
X O _ _ € Xo i~~~. t~x A.5

_ _  
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Set x T~~
1 and x T 3 . Then

Q3+l : 
~~~~~~~~~ 

- cTg~~~~ b b
1 

- T
g
J
~~

wheDe b 14. 29x 10 3 
10

-1. 86x10 3 /T~ 
-

~ IT 3 2

and 3 .
~~P io 7 . 6 3  -

\t~riting 
in the proper notatioflS def in ed ~ fl this paper and using

(146), we have

b b A  b b A  b b A

g /k h 
+ ___~~_-Si q~ 

+ + Q~ 
A. ?

Then finally we may write, by using 
(A.1),

E Et
t
h 

+ E q~~ + E
T 

A . 8

where

E f b b A / A
i t

E q 
f ( b b 1Aq /A - 1) A .9

E
T 

abb lA T /A + Q~
and

f C VH h cL+ B -ct6

k

_ _ _ _  

_ _ _ _  
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